Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nat Commun ; 14(1): 7920, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040726

RESUMO

Many functional aspects of the protein kinase p38α have been illustrated by more than three hundred structures determined in the presence of reducing agents. These structures correspond to free forms and complexes with activators, substrates, and inhibitors. Here we report the conformation of an oxidized state with an intramolecular disulfide bond between Cys119 and Cys162 that is conserved in vertebrates. The structure of the oxidized state does not affect the conformation of the catalytic site, but alters the docking groove by partially unwinding and displacing the short αD helix due to the movement of Cys119 towards Cys162. The transition between oxidized and reduced conformations provides a mechanism for fine-tuning p38α activity as a function of redox conditions, beyond its activation loop phosphorylation. Moreover, the conformational equilibrium between these redox forms reveals an unexplored cleft for p38α inhibitor design that we describe in detail.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Animais , Conformação Proteica , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosforilação/fisiologia , Domínio Catalítico , Oxirredução
2.
Nat Commun ; 14(1): 3318, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37308482

RESUMO

p38α is a versatile protein kinase that can control numerous processes and plays important roles in the cellular responses to stress. Dysregulation of p38α signaling has been linked to several diseases including inflammation, immune disorders and cancer, suggesting that targeting p38α could be therapeutically beneficial. Over the last two decades, numerous p38α inhibitors have been developed, which showed promising effects in pre-clinical studies but results from clinical trials have been disappointing, fueling the interest in the generation of alternative mechanisms of p38α modulation. Here, we report the in silico identification of compounds that we refer to as non-canonical p38α inhibitors (NC-p38i). By combining biochemical and structural analyses, we show that NC-p38i efficiently inhibit p38α autophosphorylation but weakly affect the activity of the canonical pathway. Our results demonstrate how the structural plasticity of p38α can be leveraged to develop therapeutic opportunities targeting a subset of the functions regulated by this pathway.


Assuntos
Inflamação , Transdução de Sinais , Humanos , Fosforilação
3.
Kidney Int ; 104(3): 508-525, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356621

RESUMO

Natriuretic peptides exert not only blood-lowering but also kidney-protective effects through guanylyl cyclase-A (GC-A), a natriuretic peptide receptor. Signaling through GC-A has been shown to protect podocytes from aldosterone-induced glomerular injury, and a p38 mitogen-activated protein kinase (MAPK) inhibitor reduced glomerular injury in aldosterone-infused podocyte-specific GC-A knockout mice. To explore the role of p38 MAPK in podocytes, we constructed podocyte-specific p38 MAPK and GC-A double knockout mice (pod-double knockout mice). Unexpectedly, aldosterone-infused and high salt-fed (B-ALDO)-treated pod-double knockout mice resulted in elevated serum creatinine, massive albuminuria, macrophage infiltration, foot process effacement, nephrin and podocin reduction, and additionally, intra-capillary fibrin thrombi, indicating endothelial injury. Microarray analysis showed increased plasminogen activator inhibitor-1 (PAI-1) in glomeruli of B-ALDO-treated pod-double knockout mice. In B-ALDO-treated pod-double knockout mice, PAI-1 increased in podocytes, and treatment with PAI-1 neutralizing antibody ameliorated intra-capillary thrombus formation. In vitro, deletion of p38 MAPK by the CRISPR/Cas9 system and knockdown of GC-A in human cultured podocytes upregulated PAI-1 and transforming growth factor- ß1 (TGF-ß1). When p38 MAPK knockout podocytes, transfected with a small interfering RNA to suppress GC-A, were co-cultured with glomerular endothelial cells in a transwell system, the expression of TGF-ß1 was increased in glomerular endothelial cells. PAI-1 inhibition ameliorated both podocyte and endothelial injury in the transwell system signifying elevated PAI-1 in podocytes is a factor disrupting normal podocyte-endothelial crosstalk. Thus, our results indicate that genetic dual deletion of p38 MAPK and GC-A in podocytes accelerates both podocyte and endothelial injuries, suggesting these two molecules play indispensable roles in podocyte function.


Assuntos
Podócitos , Trombose , Animais , Humanos , Camundongos , Aldosterona/farmacologia , Aldosterona/metabolismo , Células Endoteliais/metabolismo , Guanilato Ciclase/metabolismo , Guanilato Ciclase/farmacologia , Camundongos Knockout , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Podócitos/metabolismo , Trombose/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Quinase 14 Ativada por Mitógeno
4.
Mol Cell Proteomics ; 22(4): 100527, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894123

RESUMO

p38α (encoded by MAPK14) is a protein kinase that regulates cellular responses to almost all types of environmental and intracellular stresses. Upon activation, p38α phosphorylates many substrates both in the cytoplasm and nucleus, allowing this pathway to regulate a wide variety of cellular processes. While the role of p38α in the stress response has been widely investigated, its implication in cell homeostasis is less understood. To investigate the signaling networks regulated by p38α in proliferating cancer cells, we performed quantitative proteomic and phosphoproteomic analyses in breast cancer cells in which this pathway had been either genetically targeted or chemically inhibited. Our study identified with high confidence 35 proteins and 82 phosphoproteins (114 phosphosites) that are modulated by p38α and highlighted the implication of various protein kinases, including MK2 and mTOR, in the p38α-regulated signaling networks. Moreover, functional analyses revealed an important contribution of p38α to the regulation of cell adhesion, DNA replication, and RNA metabolism. Indeed, we provide experimental evidence supporting that p38α facilitates cancer cell adhesion and showed that this p38α function is likely mediated by the modulation of the adaptor protein ArgBP2. Collectively, our results illustrate the complexity of the p38α-regulated signaling networks, provide valuable information on p38α-dependent phosphorylation events in cancer cells, and document a mechanism by which p38α can regulate cell adhesion.


Assuntos
Neoplasias , Proteômica , Adesão Celular , Fosforilação , Proteínas Quinases , Proteômica/métodos , Transdução de Sinais , Proteína Quinase 14 Ativada por Mitógeno/metabolismo
5.
iScience ; 26(3): 106202, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876138

RESUMO

In the adult mammalian brain, most neural stem cells (NSCs) are held in a reversible state of quiescence, which is essential to avoid NSC exhaustion and determine the appropriate neurogenesis rate. NSCs of the mouse adult subependymal niche provide neurons for olfactory circuits and can be found at different depths of quiescence, but very little is known on how their quiescence-to-activation transition is controlled. Here, we identify the atypical cyclin-dependent kinase (CDK) activator RingoA as a regulator of this process. We show that the expression of RingoA increases the levels of CDK activity and facilitates cell cycle entry of a subset of NSCs that divide slowly. Accordingly, RingoA-deficient mice exhibit reduced olfactory neurogenesis with an accumulation of quiescent NSCs. Our results indicate that RingoA plays an important role in setting the threshold of CDK activity required for adult NSCs to exit quiescence and may represent a dormancy regulator in adult mammalian tissues.

6.
Cancers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36765568

RESUMO

We report a series of small molecule proteolysis-targeting chimeras (PROTACs) that target the protein kinase p38α for degradation. These PROTACs are based on a ligand of the VHL E3 ubiquitin ligase, which is linked to an ATP competitive inhibitor of p38α. We provide evidence that these compounds can induce the specific degradation of p38α, but not p38ß and other related kinases, at nanomolar concentrations in several mammalian cell lines. We also show that the p38α-specific PROTACs are soluble in aqueous solutions and therefore suitable for their administration to mice. Systemic administration of the PROTACs induces p38α degradation only in the liver, probably due to the PROTAC becoming inactivated in that organ, but upon local administration the PROTACs induce p38α degradation in mammary tumors. Our compounds provide an alternative to traditional chemical inhibitors for targeting p38α signaling in cultured cells and in vivo.

7.
Sci Signal ; 15(764): eabq5389, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36512641

RESUMO

Promoters of antimicrobial genes function as logic boards, integrating signals of innate immune responses. One such set of genes is stimulated by interferon (IFN) signaling, and the expression of these genes [IFN-stimulated genes (ISGs)] can be further modulated by cell stress-induced pathways. Here, we investigated the global effect of stress-induced p38 mitogen-activated protein kinase (MAPK) signaling on the response of macrophages to IFN. In response to cell stress that coincided with IFN exposure, the p38 MAPK-activated transcription factors CREB and c-Jun, in addition to the IFN-activated STAT family of transcription factors, bound to ISGs. In addition, p38 MAPK signaling induced activating histone modifications at the loci of ISGs and stimulated nuclear translocation of the CREB coactivator CRTC3. These actions synergistically enhanced ISG expression. Disrupting this synergy with p38 MAPK inhibitors improved the viability of macrophages infected with Listeria monocytogenes. Our findings uncover a mechanism of transcriptional synergism and highlight the biological consequences of coincident stress-induced p38 MAPK and IFN-stimulated signal transduction.


Assuntos
Interferon gama , Interferons , Interferons/genética , Interferons/farmacologia , Interferons/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transcrição Gênica , Fatores de Transcrição/metabolismo , Fosforilação
8.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442882

RESUMO

Chronic inflammation is a major cause of disease. Inflammation resolution is in part directed by the differential stability of mRNAs encoding pro-inflammatory and anti-inflammatory factors. In particular, tristetraprolin (TTP)-directed mRNA deadenylation destabilizes AU-rich element (ARE)-containing mRNAs. However, this mechanism alone cannot explain the variety of mRNA expression kinetics that are required to uncouple degradation of pro-inflammatory mRNAs from the sustained expression of anti-inflammatory mRNAs. Here, we show that the RNA-binding protein CPEB4 acts in an opposing manner to TTP in macrophages: it helps to stabilize anti-inflammatory transcripts harboring cytoplasmic polyadenylation elements (CPEs) and AREs in their 3'-UTRs, and it is required for the resolution of the lipopolysaccharide (LPS)-triggered inflammatory response. Coordination of CPEB4 and TTP activities is sequentially regulated through MAPK signaling. Accordingly, CPEB4 depletion in macrophages impairs inflammation resolution in an LPS-induced sepsis model. We propose that the counterbalancing actions of CPEB4 and TTP, as well as the distribution of CPEs and AREs in their target mRNAs, define transcript-specific decay patterns required for inflammation resolution. Thus, these two opposing mechanisms provide a fine-tuning control of inflammatory transcript destabilization while maintaining the expression of the negative feedback loops required for efficient inflammation resolution; disruption of this balance can lead to disease.


Assuntos
Macrófagos , Estabilidade de RNA , Proteínas de Ligação a RNA , Tristetraprolina , Regiões 3' não Traduzidas , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
9.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272277

RESUMO

Cell survival in response to stress is determined by the coordination of various signaling pathways. The kinase p38α is activated by many stresses, but the intensity and duration of the signal depends on the stimuli. How different p38α-activation dynamics may impact cell life/death decisions is unclear. Here, we show that the p38α-signaling output in response to stress is modulated by the expression levels of the downstream kinase MK2. We demonstrate that p38α forms a complex with MK2 in nonstimulated mammalian cells. Upon pathway activation, p38α phosphorylates MK2, the complex dissociates, and MK2 is degraded. Interestingly, transient p38α activation allows MK2 reexpression, reassembly of the p38α-MK2 complex, and cell survival. In contrast, sustained p38α activation induced by severe stress interferes with p38α-MK2 interaction, resulting in irreversible MK2 loss and cell death. MK2 degradation is mediated by the E3 ubiquitin ligase MDM2, and we identify four lysine residues in MK2 that are directly ubiquitinated by MDM2. Expression of an MK2 mutant that cannot be ubiquitinated by MDM2 enhances the survival of stressed cells. Our results indicate that MK2 reexpression and binding to p38α is critical for cell viability in response to stress and illustrate how particular p38α-activation patterns induced by different signals shape the stress-induced cell fate.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Estresse Fisiológico , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinação
10.
N Engl J Med ; 384(16): e59, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33882214
12.
Nat Rev Mol Cell Biol ; 22(5): 346-366, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33504982

RESUMO

The ability of cells to deal with different types of stressful situations in a precise and coordinated manner is key for survival and involves various signalling networks. Over the past 25 years, p38 kinases - in particular, p38α - have been implicated in the cellular response to stress at many levels. These span from environmental and intracellular stresses, such as hyperosmolarity, oxidative stress or DNA damage, to physiological situations that involve important cellular changes such as differentiation. Given that p38α controls a plethora of functions, dysregulation of this pathway has been linked to diseases such as inflammation, immune disorders or cancer, suggesting the possibility that targeting p38α could be of therapeutic interest. In this Review, we discuss the organization of this signalling pathway focusing on the diversity of p38α substrates, their mechanisms and their links to particular cellular functions. We then address how the different cellular responses can be generated depending on the signal received and the cell type, and highlight the roles of this kinase in human physiology and in pathological contexts.


Assuntos
Inflamação/genética , Neoplasias/genética , Estresse Oxidativo/genética , Diferenciação Celular/genética , Humanos , Inflamação/patologia , Neoplasias/patologia , Fosforilação , Transdução de Sinais/genética
13.
Cancer Res ; 80(21): 4668-4680, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816905

RESUMO

Carcinoma development in colorectal cancer is driven by genetic alterations in numerous signaling pathways. Alterations in the RAS-ERK1/2 pathway are associated with the shortest overall survival for patients after diagnosis of colorectal cancer metastatic disease, yet how RAS-ERK signaling regulates colorectal cancer metastasis remains unknown. In this study, we used an unbiased screening approach based on selection of highly liver metastatic colorectal cancer cells in vivo to determine genes associated with metastasis. From this, an ERK1/2-controlled metastatic gene set (EMGS) was defined. EMGS was associated with increased recurrence and reduced survival in patients with colorectal cancer tumors. Higher levels of EMGS expression were detected in the colorectal cancer subsets consensus molecular subtype (CMS)1 and CMS4. ANGPT2 and CXCR4, two genes within the EMGS, were subjected to gain-of-function and loss-of-function studies in several colorectal cancer cell lines and then tested in clinical samples. The RAS-ERK1/2 axis controlled expression of the cytokine ANGPT2 and the cytokine receptor CXCR4 in colorectal cancer cells, which facilitated development of liver but not lung metastases, suggesting that ANGPT2 and CXCR4 are important for metastatic outgrowth in the liver. CXCR4 controlled the expression of cytokines IL10 and CXCL1, providing evidence for a causal role of IL10 in supporting liver colonization. In summary, these studies demonstrate that amplification of ERK1/2 signaling in KRAS-mutated colorectal cancer cells affects the cytokine milieu of the tumors, possibly affecting tumor-stroma interactions and favoring liver metastasis formation. SIGNIFICANCE: These findings identify amplified ERK1/2 signaling in KRAS-mutated colorectal cancer cells as a driver of tumor-stroma interactions that favor formation of metastases in the liver.


Assuntos
Angiopoietina-2/biossíntese , Neoplasias do Colo/patologia , Sistema de Sinalização das MAP Quinases/fisiologia , Invasividade Neoplásica/patologia , Receptores CXCR4/biossíntese , Animais , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Invasividade Neoplásica/genética , Regulação para Cima
14.
Eur J Med Chem ; 201: 112451, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32634680

RESUMO

We report the design of hetero-bifunctional small molecules that selectively target p38α and p38ß for degradation. These proteolysis targeted chimeras (PROTACs) are based on an ATP competitive inhibitor of p38α and p38ß, which is linked to thalidomide analogues to recruit the Cereblon E3 ubiquitin ligase complex. Compound synthesis was facilitated by the use of a copper catalyzed "click" reaction. We show that optimization of the linker length and composition is crucial for the degradation-inducing activity of these PROTACs. We provide evidence that these chemical compounds can induce degradation of p38α and p38ß but no other related kinases at nanomolar concentrations in several mammalian cell lines. Accordingly, the PROTACs inhibit stress and cytokine-induced p38α signaling. Our compounds contribute to understanding the development of PROTACs, and provide a useful tool to investigate functions of the p38 MAPK pathway and its involvement in diseases.


Assuntos
Benzamidas/farmacologia , Proteína Quinase 11 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Piridonas/farmacologia , Talidomida/análogos & derivados , Talidomida/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Benzamidas/síntese química , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Proteína Quinase 11 Ativada por Mitógeno/química , Proteína Quinase 11 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Proteólise/efeitos dos fármacos , Piridonas/síntese química , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Semin Cell Dev Biol ; 107: 21-27, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32317145

RESUMO

Cyclin-dependent kinases (CDKs) require the binding to a regulatory subunit to acquire enzymatic activity, and cyclins are the canonical CDK activators. However, there are specific situations in which CDKs can be activated by non-cyclin proteins that are less characterized. This review focuses on the family of RINGO/Speedy proteins, which have no sequence amino acid homology to cyclins but can bind to and activate CDK1 and CDK2. Interestingly, RINGO/Speedy proteins can activate CDKs under conditions in which CDK-cyclin complexes would not be active, and there is evidence that RINGO/Speedy-activated CDKs can phosphorylate different sites than the cyclin-activated CDKs. RINGO/Speedy proteins were originally described in Xenopus oocytes, but their roles in mammalian cells have also been addressed. We will summarize the properties of RINGO/Speedy proteins and how they trigger CDK activation, and discuss recent studies that characterized their physiological functions. In particular, studies using genetically modified mice have shown that RingoA, also known as Spy1, plays a key role in meiosis regulation. Emerging evidence also suggests a potential role for RingoA/Spy1 in cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Animais , Dano ao DNA , Ativação Enzimática , Humanos , Meiose , Neoplasias/metabolismo , Neoplasias/patologia
16.
EMBO Rep ; 21(6): e49708, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32270911

RESUMO

The intestinal epithelium is a paradigm of adult tissue in constant regeneration that is supported by intestinal stem cells (ISCs). The mechanisms regulating ISC homeostasis after injury are poorly understood. We previously demonstrated that IκBα, the main regulator of NF-κB, exerts alternative nuclear functions as cytokine sensor in a subset of PRC2-regulated genes. Here, we show that nuclear IκBα is present in the ISC compartment. Mice deficient for IκBα show altered intestinal cell differentiation with persistence of a fetal-like ISC phenotype, associated with aberrant PRC2 activity at specific loci. Moreover, IκBα-deficient intestinal cells produce morphologically aberrant organoids carrying a PRC2-dependent fetal-like transcriptional signature. DSS treatment, which induces acute damage in the colonic epithelium of mice, results in a temporary loss of nuclear P-IκBα and its subsequent accumulation in early CD44-positive regenerating areas. Importantly, IκBα-deficient mice show higher resistance to damage, likely due to the persistent fetal-like ISC phenotype. These results highlight intestinal IκBα as a chromatin sensor of inflammation in the ISC compartment.


Assuntos
Intestinos , Células-Tronco , Animais , Mucosa Intestinal , Camundongos , Inibidor de NF-kappaB alfa/genética , Fenótipo
17.
Proc Natl Acad Sci U S A ; 117(5): 2588-2596, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31969449

RESUMO

Malignant transformation entails important changes in the control of cell proliferation through the rewiring of selected signaling pathways. Cancer cells then become very dependent on the proper function of those pathways, and their inhibition offers therapeutic opportunities. Here we identify the stress kinase p38α as a nononcogenic signaling molecule that enables the progression of KrasG12V-driven lung cancer. We demonstrate in vivo that, despite acting as a tumor suppressor in healthy alveolar progenitor cells, p38α contributes to the proliferation and malignization of lung cancer epithelial cells. We show that high expression levels of p38α correlate with poor survival in lung adenocarcinoma patients, and that genetic or chemical inhibition of p38α halts tumor growth in lung cancer mouse models. Moreover, we reveal a lung cancer epithelial cell-autonomous function for p38α promoting the expression of TIMP-1, which in turn stimulates cell proliferation in an autocrine manner. Altogether, our results suggest that epithelial p38α promotes KrasG12V-driven lung cancer progression via maintenance of cellular self-growth stimulatory signals.


Assuntos
Adenocarcinoma de Pulmão/enzimologia , Neoplasias Pulmonares/enzimologia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Humanos , Pulmão/enzimologia , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 14 Ativada por Mitógeno/genética , Processos Neoplásicos , Proteínas Proto-Oncogênicas p21(ras)/genética
18.
Blood Cancer J ; 10(1): 3, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31913266

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematologic malignancy. Although novel emerging drugs are available, the overall prognosis remains poor and new therapeutic approaches are required. PP2A phosphatase is a key regulator of cell homeostasis and is recurrently inactivated in AML. The anticancer activity of several PP2A-activating drugs (e.g., FTY720) depends on their interaction with the SET oncoprotein, an endogenous PP2A inhibitor that is overexpressed in 30% of AML cases. Elucidation of SET regulatory mechanisms may therefore provide novel targeted therapies for SET-overexpressing AMLs. Here, we show that upregulation of protein kinase p38ß is a common event in AML. We provide evidence that p38ß potentiates SET-mediated PP2A inactivation by two mechanisms: facilitating SET cytoplasmic translocation through CK2 phosphorylation, and directly binding to and stabilizing the SET protein. We demonstrate the importance of this new regulatory mechanism in primary AML cells from patients and in zebrafish xenograft models. Accordingly, combination of the CK2 inhibitor CX-4945, which retains SET in the nucleus, and FTY720, which disrupts the SET-PP2A binding in the cytoplasm, significantly reduces the viability and migration of AML cells. In conclusion, we show that the p38ß/CK2/SET axis represents a new potential therapeutic pathway in AML patients with SET-dependent PP2A inactivation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/genética , Pessoa de Meia-Idade , Transdução de Sinais , Transfecção , Peixe-Zebra
20.
Aging Cell ; 18(6): e13044, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31560167

RESUMO

Neuronal activity regulates cognition and neural stem cell (NSC) function. The molecular pathways limiting neuronal activity during aging remain largely unknown. In this work, we show that p38MAPK activity increases in neurons with age. By using mice expressing p38α-lox and CamkII-Cre alleles (p38α∆-N), we demonstrate that genetic deletion of p38α in neurons suffices to reduce age-associated elevation of p38MAPK activity, neuronal loss and cognitive decline. Moreover, aged p38α∆-N mice present elevated numbers of NSCs in the hippocampus and the subventricular zone. These results reveal novel roles for neuronal p38MAPK in age-associated NSC exhaustion and cognitive decline.


Assuntos
Envelhecimento/metabolismo , Disfunção Cognitiva/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Animais , Disfunção Cognitiva/patologia , Camundongos , Células-Tronco Neurais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...